红外目标检测实验结果收集
pytorch yolov3
Epoch |
Model |
P |
R |
mAP@0.5 |
F1 |
dataset |
默认anchor |
v3tinyse |
0.98 |
0.958 |
0.953 |
0.969 |
valid |
默认anchor |
v3tinyse |
0.933 |
0.895 |
0.878 |
0.913 |
test |
默认anchor |
v3tinycbam |
0.987 |
0.963 |
0.964 |
0.975 |
valid |
默认anchor |
v3tinycbam |
0.958 |
0.896 |
0.884 |
0.926 |
test |
3a |
dt-16d-3a |
0.982 |
0.958 |
0.95 |
0.97 |
valid |
3a |
dt-16d-3a |
0.922 |
0.894 |
0.876 |
0.908 |
test |
6a |
dt-16d-6a |
0.983 |
0.98 |
0.983 |
0.982 |
valid |
6a |
dt-16d-6a |
0.944 |
0.924 |
0.911 |
0.934 |
test |
原始anchor |
v3tiny |
0.971 |
0.978 |
0.973 |
0.974 |
valid |
原始anchor |
v3tiny |
0.931 |
0.899 |
0.884 |
0.915 |
test |
6a |
dt-6a-cbam |
0.983 |
0.978 |
0.974 |
0.98 |
valid |
6a |
dt-6a-cbam |
0.93 |
0.926 |
0.915 |
0.928 |
test |
Epoch |
Model |
P |
R |
mAP |
F1 |
dataset |
6a |
dt-6a-se |
0.983 |
0.983 |
0.985 |
0.983 |
valid |
6a |
dt-6a-se |
0.936 |
0.93 |
0.919 |
0.933 |
test |
6a |
dt-6a-dilated |
0.957 |
0.971 |
0.964 |
0.964 |
valid |
6a |
dt-6a-dilated |
0.925 |
0.919 |
0.897 |
0.922 |
test |
全部+se |
dt-6a-multi-se |
0.98 |
0.976 |
0.973 |
0.978 |
valid |
全部+se |
dt-6a-multi-se |
0.913 |
0.941 |
0.926 |
0.927 |
test |
backbone+se |
dt-6a-multi-se |
0.983 |
0.978 |
0.973 |
0.98 |
valid |
backbone+se |
dt-6a-multi-se |
0.942 |
0.922 |
0.91 |
0.932 |
test |
old:60 |
dense-v3-tiny |
0.975 |
0.961 |
0.963 |
0.968 |
valid |
old:60 |
dense-v3-tiny |
0.945 |
0.908 |
0.89 |
0.926 |
test |
修改好的 |
dense-v3-tiny |
0.988 |
0.983 |
0.981 |
0.985 |
valid |
修改好的 |
dense-v3-tiny |
0.925 |
0.945 |
0.933 |
0.935 |
test |
默认anchor |
yolov3 |
0.995 |
0.965 |
0.963 |
0.964 |
valid |
默认anchor |
yolov3 |
0.953 |
0.88 |
0.876 |
0.915 |
test |
Epoch |
Model |
P |
R |
mAP |
F1 |
dataset |
6a |
dt-6a-spp |
0.985 |
0.973 |
0.974 |
0.979 |
valid |
6a |
dt-6a-spp |
0.954 |
0.934 |
0.927 |
0.944 |
test |
6a |
dt-6a-swish |
0.983 |
0.983 |
0.981 |
0.983 |
valid |
6a |
dt-6a-swish |
0.936 |
0.93 |
0.923 |
0.933 |
test |
pool->conv |
dt-6a-conv |
0.978 |
0.976 |
0.974 |
0.977 |
valid |
pool->conv |
dt-6a-conv |
0.931 |
0.918 |
0.899 |
0.925 |
test |
bbone-res10 |
res10-6a-spp |
0.988 |
0.978 |
0.975 |
0.983 |
valid |
bbone-res10 |
res10-6a-spp |
0.934 |
0.923 |
0.913 |
0.928 |
test |
Epoch |
Model |
P |
R |
mAP |
F1 |
dataset |
9a |
csresnext50-panet-spp |
0.98 |
0.98 |
0.984 |
0.98 |
valid |
9a |
csresnext50-panet-spp |
0.906 |
0.901 |
0.886 |
0.904 |
test |
|
dt-8d-6a |
0.99 |
0.946 |
0.943 |
0.968 |
valid |
|
dt-8d-6a |
0.942 |
0.885 |
0.872 |
0.912 |
test |
|
dt-6a-bifpn |
0.98 |
0.978 |
0.973 |
0.979 |
valid |
|
dt-6a-bifpn |
0.938 |
0.928 |
0.911 |
0.933 |
test |
6a |
yolov3-tiny-prn |
0.985 |
0.978 |
0.975 |
0.982 |
valid |
6a |
yolov3-tiny-prn |
0.936 |
0.922 |
0.914 |
0.929 |
test |
6a |
yolov3-tiny-6a |
0.973 |
0.98 |
0.984 |
0.977 |
valid |
6a |
yolov3-tiny-6a |
0.936 |
0.925 |
0.915 |
0.931 |
test |
显存占用过大 |
dt-4d-6a |
0.994 |
0.795 |
0.793 |
0.883 |
valid |
显存占用过大 |
dt-4d-6a |
0.978 |
0.728 |
0.715 |
0.835 |
test |
Epoch |
Model |
P |
R |
mAP |
F1 |
dataset |
|
dt-6a-prn-spp |
0.993 |
0.983 |
0.985 |
0.988 |
valid |
|
dt-6a-prn-spp |
0.944 |
0.932 |
0.922 |
0.938 |
test |
multi-scale+obj1 |
yolov3-tiny-6a |
0.977 |
0.946 |
0.941 |
0.961 |
valid |
multi-scale+obj1 |
yolov3-tiny-6a |
0.936 |
0.88 |
0.865 |
0.907 |
test |
过采样+FFM(os) |
dt-6a-spp-ffm |
0.988 |
0.988 |
0.982 |
0.988 |
valid |
过采样+FFM(os) |
dt-6a-spp-ffm |
0.944 |
0.938 |
0.915 |
0.941 |
test |
adam+obj(os) |
yolov3-tiny-6a |
0.966 |
0.983 |
0.982 |
0.975 |
valid |
adam+obj(os) |
yolov3-tiny-6a |
0.907 |
0.915 |
0.899 |
0.911 |
test |
过采样(os) |
dt-6a-spp |
0.99 |
0.983 |
0.984 |
0.987 |
valid |
过采样(os) |
dt-6a-spp |
0.955 |
0.948 |
0.929 |
0.951 |
test |
9a(os) |
yolov3-tiny-3l-9a |
0.976 |
0.978 |
0.97 |
0.97 |
valid |
9a(os) |
yolov3-tiny-3l-9a |
0.932 |
0.93 |
0.917 |
0.931 |
test |
过采样(os) |
dense-v3-tiny |
0.993 |
0.985 |
0.983 |
0.989 |
valid |
过采样(os) |
dense-v3-tiny |
0.945 |
0.947 |
0.928 |
0.946 |
test |
cbam branch(os) |
dt-6a-spp-cbam-branch |
0.993 |
0.983 |
0.983 |
0.988 |
valid |
cbam branch(os) |
dt-6a-spp-cbam-branch |
0.949 |
0.934 |
0.914 |
0.942 |
test |
过采样(os) |
enet-6a |
0.993 |
0.993 |
0.993 |
0.993 |
valid |
过采样(os) |
enet-6a |
0.937 |
0.926 |
0.896 |
0.932 |
test |
modifed-SE(os) |
dt-6a-multi-se |
0.978 |
0.978 |
0.972 |
0.978 |
valid |
modifed-SE(os) |
dt-6a-multi-se |
0.939 |
0.938 |
0.921 |
0.939 |
test |
aspp(os) |
dt-6a-aspp |
0.99 |
0.99 |
0.992 |
0.99 |
valid |
aspp(os) |
dt-6a-aspp |
0.935 |
0.938 |
0.909 |
0.937 |
test |
过采样(os) |
dense-v3-tiny-spp |
0.993 |
0.993 |
0.993 |
0.993 |
valid |
过采样(os) |
dense-v3-tiny-spp |
0.952 |
0.949 |
0.932 |
0.951 |
test |
pspnet中的结构(os) |
dt-6a-ppm |
0.985 |
0.985 |
0.981 |
0.985 |
valid |
pspnet中的结构(os) |
dt-6a-ppm |
0.93 |
0.934 |
0.911 |
0.932 |
test |
corner pool(os) |
dt-6a-corner-spp |
0.988 |
0.985 |
0.982 |
0.987 |
valid |
corner pool(os) |
dt-6a-corner-spp |
0.937 |
0.938 |
0.917 |
0.937 |
test |
|
dt-6a-dense-spp |
0.985 |
0.983 |
0.983 |
0.984 |
valid |
|
dt-6a-dense-spp |
0.938 |
0.939 |
0.911 |
0.939 |
test |
os |
dt-6a-spp2 |
0.99 |
0.985 |
0.982 |
0.988 |
valid |
os |
dt-6a-spp2 |
0.949 |
0.945 |
0.925 |
0.947 |
test |
|
dt-6a-spp-multi-se |
0.99 |
0.978 |
0.972 |
0.984 |
valid |
|
dt-6a-spp-multi-se |
0.939 |
0.936 |
0.917 |
0.937 |
test |
|
dt-6a-slim-spp |
0.993 |
0.988 |
0.983 |
0.99 |
valid |
|
dt-6a-slim-spp |
0.937 |
0.928 |
0.899 |
0.933 |
test |
LiteSeg aspp |
dt-6a-aspp |
0.99 |
0.988 |
0.985 |
0.989 |
valid |
LiteSeg aspp |
dt-6a-aspp |
0.96 |
0.926 |
0.904 |
0.943 |
test |
add1×1conv |
dt-6a-16d-up4 |
0.995 |
0.988 |
0.982 |
0.991 |
valid |
1:2 |
dt-6a-16d-up4 |
0.94 |
0.93 |
0.914 |
0.935 |
test |
baseline(os) |
yolov3-tiny原版 |
0.985 |
0.971 |
0.973 |
0.978 |
valid |
baseline(os) |
yolov3-tiny原版 |
0.936 |
0.871 |
0.86 |
0.902 |
test |
baseline |
yolov3-tiny原版 |
0.982 |
0.939 |
0.932 |
0.96 |
valid |
baseline |
yolov3-tiny原版 |
0.96 |
0.873 |
0.869 |
0.914 |
test |
SPP系列实验
Epoch |
Model |
P |
R |
mAP |
F1 |
dataset |
baseline |
dt-6a-spp |
0.99 |
0.983 |
0.984 |
0.987 |
valid |
baseline |
dt-6a-spp |
0.955 |
0.948 |
0.929 |
0.951 |
test |
直连+5x5 |
dt-6a-spp-5 |
0.978 |
0.983 |
0.981 |
0.98 |
valid |
直连+5x5 |
dt-6a-spp-5 |
0.933 |
0.93 |
0.914 |
0.932 |
test |
直连+9x9 |
dt-6a-spp-9 |
0.99 |
0.983 |
0.982 |
0.987 |
valid |
直连+9x9 |
dt-6a-spp-9 |
0.939 |
0.923 |
0.904 |
0.931 |
test |
直连+13x13 |
dt-6a-spp-13 |
0.995 |
0.983 |
0.983 |
0.989 |
valid |
直连+13x13 |
dt-6a-spp-13 |
0.959 |
0.941 |
0.93 |
0.95 |
test |
直连+5x5+9x9 |
dt-6a-spp-5-9 |
0.988 |
0.988 |
0.981 |
0.988 |
valid |
直连+5x5+9x9 |
dt-6a-spp-5-9 |
0.937 |
0.936 |
0.91 |
0.936 |
test |
直连+5x5+13x13 |
dt-6a-spp-5-13 |
0.993 |
0.988 |
0.985 |
0.99 |
valid |
直连+5x5+13x13 |
dt-6a-spp-5-13 |
0.936 |
0.939 |
0.91 |
0.938 |
test |
直连+9x9+13x13 |
dt-6a-spp-9-13 |
0.981 |
0.985 |
0.983 |
0.983 |
valid |
直连+9x9+13x13 |
dt-6a-spp-9-13 |
0.925 |
0.934 |
0.907 |
0.93 |
test |
|
dt-6a-spp-acconv |
0.988 |
0.983 |
0.983 |
0.985 |
valid |
|
dt-6a-spp-acconv |
0.947 |
0.945 |
0.92 |
0.945 |
test |
1 3 4 5 |
dt-6a-aspp |
0.993 |
0.985 |
0.98 |
0.989 |
valid |
|
dt-6a-aspp |
0.947 |
0.933 |
0.907 |
0.94 |
test |
|
densenet201-bifpn |
|
|
|
|
valid |
|
densenet201-bifpn |
|
|
|
|
test |
|
yolov3-spp-9a |
0.995 |
0.995 |
0.993 |
0.995 |
valid |
|
yolov3-spp-9a |
0.948 |
0.942 |
0.923 |
0.945 |
test |
1,13|13,1|13,13 |
dt-6a-maxpoolone |
0.99 |
0.988 |
0.982 |
0.989 |
valid |
|
dt-6a-maxpoolone |
0.956 |
0.941 |
0.928 |
0.948 |
test |
并联 |
dt-6a-spp-13-se |
0.942 |
0.943 |
0.922 |
0.943 |
test |
|
dt-6a-spp-13-se |
0.985 |
0.988 |
0.98 |
0.987 |
valid |
|
dt-6a-spp-rfb |
0.993 |
0.985 |
0.985 |
0.989 |
valid |
|
dt-6a-spp-rfb |
0.944 |
0.936 |
0.913 |
0.94 |
test |
SPP 更改best标准后 系列实验
Epoch |
Model |
P |
R |
mAP |
F1 |
dataset |
baseline |
dt-6a-spp |
0.998 |
0.99 |
0.995 |
0.994 |
valid |
baseline |
dt-6a-spp |
0.948 |
0.938 |
0.919 |
0.943 |
test |
直连+5x5 |
dt-6a-spp-5 |
0.993 |
0.983 |
0.982 |
0.988 |
valid |
直连+5x5 |
dt-6a-spp-5 |
0.941 |
0.94 |
0.921 |
0.94 |
test |
直连+9x9 |
dt-6a-spp-9 |
|
|
|
|
valid |
直连+9x9 |
dt-6a-spp-9 |
|
|
|
|
test |
直连+13x13 |
dt-6a-spp-13 |
|
|
|
|
valid |
直连+13x13 |
dt-6a-spp-13 |
|
|
|
|
test |
直连+5x5+9x9 |
dt-6a-spp-5-9 |
|
|
|
|
valid |
直连+5x5+9x9 |
dt-6a-spp-5-9 |
|
|
|
|
test |
直连+5x5+13x13 |
dt-6a-spp-5-13 |
|
|
|
|
valid |
直连+5x5+13x13 |
dt-6a-spp-5-13 |
|
|
|
|
test |
直连+9x9+13x13 |
dt-6a-spp-9-13 |
|
|
|
|
valid |
直连+9x9+13x13 |
dt-6a-spp-9-13 |
|
|
|
|
test |
|
dt-6a-add-spp |
0.973 |
0.978 |
0.973 |
0.976 |
valid |
|
dt-6a-add-spp |
0.94 |
0.941 |
0.932 |
0.941 |
test |
|
dt-6a-spp-11 |
0.99 |
0.988 |
0.982 |
0.989 |
valid |
|
dt-6a-spp-11 |
0.95 |
0.944 |
0.93 |
0.947 |
test |
|
yolov3-9a |
0.99 |
0.995 |
0.994 |
0.993 |
valid |
|
yolov3-9a |
0.951 |
0.941 |
0.932 |
0.946 |
test |
-max +up 4 |
dt-6a-16d-up4 |
0.99 |
0.985 |
0.983 |
0.988 |
valid |
|
dt-6a-16d-up4 |
0.938 |
0.917 |
0.897 |
0.928 |
test |
|
dt-6a-32d-up4 |
0.988 |
0.985 |
0.985 |
0.987 |
valid |
|
dt-6a-32d-up4 |
0.943 |
0.922 |
0.904 |
0.932 |
test |
filter=1:2 |
dt-6a-16d-up4 |
0.978 |
0.978 |
0.964 |
0.978 |
valid |
|
dt-6a-16d-up4 |
0.924 |
0.935 |
0.913 |
0.93 |
test |
Darknet
默认conf_thresh:0.2 iou_thresh=0.5 multi-scale
state |
model |
P |
R |
mAP |
F1 |
data |
|
dt-6a-spp |
0.97 |
0.97 |
0.963 |
0.97 |
valid |
|
dt-6a-spp |
0.92 |
0.89 |
0.8986 |
0.91 |
test |
|
yolov3-tiny-6a |
0.98 |
0.96 |
0.9696 |
0.97 |
valid |
|
yolov3-tiny-6a |
0.91 |
0.88 |
0.8651 |
0.90 |
test |
|
dt-6a-prn-spp |
0.97 |
0.97 |
0.9752 |
0.97 |
valid |
|
dt-6a-prn-spp |
0.91 |
0.90 |
0.8998 |
0.90 |
test |
ignore=0.7 |
dt-6a-spp-fl |
0.97 |
0.97 |
0.9755 |
0.97 |
valid |
ignore=0.7 |
dt-6a-spp-fl |
0.96 |
0.93 |
0.9294 |
0.94 |
test |
ignore=0.3 |
yolov3-tiny-giou |
0.97 |
0.97 |
0.9760 |
0.97 |
valid |
ignore=0.3 |
yolov3-tiny-giou |
0.90 |
0.89 |
0.8599 |
0.89 |
test |
ignore=0.5 |
yolov3-tiny-giou |
0.95 |
0.96 |
0.9636 |
0.95 |
valid |
ignore=0.5 |
yolov3-tiny-giou |
0.90 |
0.90 |
0.8681 |
0.90 |
test |
ignore=0.3 |
dt-6a-spp-fl |
0.95 |
0.99 |
0.9874 |
0.97 |
valid |
ignore=0.3 |
dt-6a-spp-fl |
0.89 |
0.92 |
0.9103 |
0.90 |
test |
分背景测试
data |
num |
model |
P |
R |
mAP |
F1 |
trees |
514 |
dt-6a-spp |
0.947 |
0.998 |
0.992 |
0.972 |
sea_sky |
39 |
dt-6a-spp |
0.865 |
0.692 |
0.679 |
0.769 |
sea |
25 |
dt-6a-spp |
0.883 |
0.883 |
0.873 |
0.883 |
continuous_cloud_sky |
512 |
dt-6a-spp |
0.953 |
0.948 |
0.933 |
0.95 |
complex_cloud |
515 |
dt-6a-spp |
0.928 |
0.855 |
0.849 |
0.89 |
cloudless_sky |
300 |
dt-6a-spp |
0.997 |
0.987 |
0.984 |
0.992 |
architecture |
483 |
dt-6a-spp |
0.975 |
0.937 |
0.923 |
0.956 |
augData 训练
state |
model |
P |
R |
mAP |
F1 |
data |
均衡数据 |
yolov3-tiny-6a |
0.988 |
0.985 |
0.985 |
0.987 |
valid |
均衡数据 |
yolov3-tiny-6a |
0.95 |
0.935 |
0.919 |
0.942 |
test |
sea sky pasted |
yolov3-tiny-6a |
0.966 |
0.976 |
0.971 |
0.971 |
valid |
sea sky pasted |
yolov3-tiny-6a |
0.92 |
0.89 |
0.878 |
0.904 |
test |
pasted 3times |
yolov3-tiny-6a |
0.988 |
0.978 |
0.974 |
0.983 |
valid |
pasted 3times |
yolov3-tiny-6a |
0.946 |
0.916 |
0.905 |
0.931 |
test |
均衡后的分背景测试
data |
num |
model |
P |
R |
mAP |
F1 |
trees |
506 |
yolov3-tiny-6a |
0.924 |
0.996 |
0.981 |
0.959 |
sea_sky |
495 |
yolov3-tiny-6a |
0.927 |
9.785 |
0.771 |
0.85 |
sea |
510 |
yolov3-tiny-6a |
0.923 |
0.935 |
0.893 |
0.929 |
continuous_cloud_sky |
878 |
yolov3-tiny-6a |
0.957 |
0.95 |
0.933 |
0.953 |
complex_cloud |
561 |
yolov3-tiny-6a |
0.943 |
0.833 |
0.831 |
0.885 |
cloudless_sky |
1320 |
yolov3-tiny-6a |
0.993 |
0.981 |
0.984 |
0.987 |
architecture |
506 |
yolov3-tiny-6a |
0.959 |
0.952 |
0.941 |
0.955 |
oversample+dt-6a-spp的分背景测试
data |
num |
model |
P |
R |
mAP |
F1 |
trees |
506 |
dt-6a-spp |
0.943 |
0.996 |
0.992 |
0.969 |
sea_sky |
495 |
dt-6a-spp |
0.927 |
0.785 |
0.777 |
0.85 |
sea |
510 |
dt-6a-spp |
0.897 |
0.909 |
0.842 |
0.903 |
continuous_cloud_sky |
878 |
dt-6a-spp |
0.951 |
0.942 |
0.912 |
0.946 |
complex_cloud |
561 |
dt-6a-spp |
0.94 |
0.886 |
0.882 |
0.912 |
cloudless_sky |
1320 |
dt-6a-spp |
0.993 |
0.981 |
0.985 |
0.987 |
architecture |
506 |
dt-6a-spp |
0.976 |
0.976 |
0.959 |
0.976 |
valid |
391 |
dt-6a-spp |
0.99 |
0.983 |
0.984 |
0.987 |
test |
2388 |
dt-6a-spp |
0.954 |
0.947 |
0.929 |
0.951 |
Anchor
3 anchor:
6 anchor:
12,17, 14,17, 15,19, 15,21, 13,20, 19,24
9 anchor:
10,16, 12,17, 13,20, 13,22, 15,18, 15,20, 15,23, 18,23, 21,26
想法
如果Attention有效果,可以 Infrared Small Target Detection Network Based On Attetion。
1:减少下采样,先只用一个YOLO Layer
2:结合FPN,看能不能有精度提升(fuse方式创新)。
3:结合注意力机制看有没有性能提升(先尝试,如果有效可以结合)。
1:depwise conv / inverted bottleneck
2: xor/or/and netowrk 和 标准的network混合,可以去看yolo-nano,我们完全可以魔改一个自己的出来。
3:Focal loss未解决
data |
num |
auged |
trees |
506 |
506 |
sea_sky |
45 |
495 |
sea |
17 |
510 |
continuous_cloud_sky |
878 |
878 |
complex_cloud |
561 |
561 |
cloudless_sky |
1320 |
1320 |
architecture |
506 |
506 |
训练数据分析(综合测试结果来看)
背景类别 |
数量 |
特点 |
数据难度 |
测试mAP+F1 |
建议 |
trees |
581 |
背景干净,目标明显,数量较多 |
低 |
0.99+0.97 |
无 |
cloudless_sky |
1320 |
背景干净,目标明显,数量多 |
低 |
0.98+0.99 |
无 |
architecture |
506 |
背景变化较大,目标形态变化较大,数量较多 |
一般 |
0.92+0.96 |
focal loss |
continuous_cloud_sky |
878 |
背景干净,目标形态变化不大,但个别目标容易会发生和背景中的云混淆 |
一般 |
0.93+0.95 |
focal loss |
complex_cloud |
561 |
目标形态基本无变化,但背景对目标的定位影响巨大 |
较难 |
0.85+0.89 |
focal loss |
sea |
17 |
背景干净,目标明显,数量极少 |
一般 |
0.87+0.88 |
生成高质量新样本,可以让其转为简单样本(Mixup) |
sea_y |
45 |
背景变化较大,且单张图像中目标个数差异变化大,有密集的难点,且数量少 |
困难 |
0.68+0.77 |
paste策 |
描述 |
模型 |
P |
R |
mAP |
F1 |
loss |
数据集 |
rfb串联 |
dt-6a-spp-rfb |
0.993 |
0.985 |
0.985 |
0.989 |
1.68 |
valid |
|
dt-6a-spp-rfb |
0.944 |
0.936 |
0.913 |
0.94 |
|
test |
|
dt-6a-spp-15 |
0.988 |
0.983 |
0.983 |
0.985 |
1.87 |
valid |
|
dt-6a-spp-15 |
0.954 |
0.933 |
0.918 |
0.943 |
|
test |
|
dt-6a-spp-11-15 |
|
|
|
|
|
vaild |
|
dt-6a-spp-11-15 |
|
|
|
|
|
test |
|
dt-6a-spp-11-13-15 |
|
|
|
|
|
valid |
|
dt-6a-spp-11-13-15 |
|
|
|
|
|
test |
本文总阅读量次