跳转至

基于Msnhnet实现最优化问题(中)一(无约束优化问题)

接上文:基于Msnhnet实现最优化问题(上)SGD&&牛顿法

1. 阻尼牛顿法

牛顿法最突出的优点是收敛速度快,具有局部二阶收敛性,但是,基本牛顿法初始点需要足够“靠近”极小点,否则,有可能导致算法不收敛。

这样就引入了阻尼牛顿法,阻尼牛顿法最核心的一点在于可以修改每次迭代的步长,通过沿着牛顿法确定的方向一维搜索最优的步长,最终选择使得函数值最小的步长。

补充:一维搜索非精确搜索方法。

1.Armijo条件(控制步长太大)

f({x}_k +\alpha_k{d}_k)≤f({x}_k )+\rho\alpha_kf’({x}_k )^T{d}_k,\rho \in (0,0.5)

满足Armijo条件的点为[0,\beta_1][\beta_2,\beta_3]区间的点.

Armijo条件

2.Goldstein准则(控制步长太小)

f({x}_k +\alpha_k{d}_k)≤f({x}_k )+\rho\alpha_kf’({x}_k )^T{d}_k\\ f({x}_k +\alpha_k{d}_k)≥f({x}_k )+(1−\rho)\alpha_kf’({x}_k )^T{d}_k\\ \rho \in (0,0.5)

满足Goldstein准则的点为[\beta_7,\beta_4][\beta_3,\beta_6]区间的点.

Goldstein准则

3.Wolfe准则

f({x}_k +\alpha_k{d}_k)≤f({x}_k )+\rho\alpha_kf’({x}_k )^T{d}_k\\ f’({x}_k +\alpha_k{d}_k)^T{d}_k≥\sigma f’({x}_k )^T{d}_k\\ 1 > \sigma >\rho > 0

满足Wolfe准则的点为[\beta_7,\beta_4],[\beta_8,\beta_9][\beta_{10},\beta_6]区间的点.

Wolfe准则

补充:一维搜索非精确搜索方法一般步骤(以Armijo为例)。

While\quad f({x}_k +\alpha_k{d}_k)>f({x}_k )+\rho\alpha_kf’({x}_k )^T{d}_k \quad \alpha_k=\tau^m_k,m_k=m_k+1, \tau \in(0,1) End

阻尼牛顿法步骤

举例

y = 3x_1^2+3x_2^2-x_1^2+x_2,初始点(1.5,1.5)(0,3),\xi=10^{-3}

#include <Msnhnet/math/MsnhMatrixS.h>
#include <Msnhnet/cv/MsnhCVGui.h>
#include <iostream>

using namespace Msnhnet;

class DampedNewton
{
public:
    DampedNewton(int maxIter, double eps, double rho, double tau):_maxIter(maxIter),_eps(eps),_rho(rho),_tau(tau){}


    void setMaxIter(int maxIter)
    {
        _maxIter = maxIter;
    }

    virtual int solve(MatSDS &startPoint) = 0;

    void setEps(double eps)
    {
        _eps = eps;
    }

    void setRho(double rho)
    {
        _rho = rho;
    }

    void setTau(double tau)
    {
        _tau = tau;
    }

    //正定性判定
    bool isPosMat(const MatSDS &H)
    {
        MatSDS eigen = H.eigen()[0];
        for (int i = 0; i < eigen.mWidth; ++i)
        {
            if(eigen[i]<=0)
            {
                return false;
            }
        }

        return true;
    }

    const std::vector<Vec2F32> &getXStep() const
    {
        return _xStep;
    }

protected:
    int _maxIter = 100;
    double _eps = 0.00001;
    double _rho = 0.2;
    double _tau = 0.9;
    std::vector<Vec2F32> _xStep;
protected:
    virtual MatSDS calGradient(const MatSDS& point) = 0;
    virtual MatSDS calHessian(const MatSDS& point) = 0;
    virtual bool calDk(const MatSDS& point, MatSDS &dk) = 0;
    virtual MatSDS function(const MatSDS& point) = 0;
};


class DampedNewtonProblem1:public DampedNewton
{
public:
    DampedNewtonProblem1(int maxIter, double eps, double rho, double tau):DampedNewton(maxIter, eps, rho, tau){}

    MatSDS calGradient(const MatSDS &point) override
    {
        MatSDS J(1,2);
        double x1 = point(0,0);
        double x2 = point(0,1);

        J(0,0) = 6*x1 - 2*x1*x2;
        J(0,1) = 6*x2 - x1*x1;

        return J;
    }

    MatSDS calHessian(const MatSDS &point) override
    {
        MatSDS H(2,2);
        double x1 = point(0,0);
        double x2 = point(0,1);

        H(0,0) = 6 - 2*x2;
        H(0,1) = -2*x1;
        H(1,0) = -2*x1;
        H(1,1) = 6;

        return H;
    }


    bool calDk(const MatSDS& point, MatSDS &dk) override
    {
        MatSDS J = calGradient(point);
        MatSDS H = calHessian(point);
        if(!isPosMat(H))
        {
            return false;
        }
        dk = -1*H.invert()*J;
        return true;
    }

    MatSDS function(const MatSDS &point) override
    {
        MatSDS f(1,1);
        double x1 = point(0,0);
        double x2 = point(0,1);

        f(0,0) = 3*x1*x1 + 3*x2*x2 - x1*x1*x2;

        return f;
    }

    int solve(MatSDS &startPoint) override
    {
        MatSDS x = startPoint;
        for (int i = 0; i < _maxIter; ++i)
        {

            _xStep.push_back({(float)x[0],(float)x[1]});
            MatSDS dk;

            bool ok = calDk(x, dk);

            if(!ok)
            {
                return -2;
            }

            double alpha = 1;

            //Armijo准则
            for (int i = 0; i < 100; ++i)
            {
                MatSDS left  = function(x + alpha*dk);
                MatSDS right = function(x) + this->_rho*alpha*calGradient(x).transpose()*dk;

                if(left(0,0) <= right(0,0))
                {
                    break;
                }

                alpha = alpha * _tau;
            }

            std::cout<<std::left<<"Iter(s): "<<std::setw(4)<<i<<", Loss: "<<std::setw(12)<<dk.L2()<<" Result: "<<function(x)[0]<<std::endl;

            x = x + alpha*dk;

            if(dk.LInf() < _eps)
            {
                startPoint = x;
                return i+1;
            }
        }

        return -1;
    }
};



int main()
{
    DampedNewtonProblem1 function(100, 0.001, 0.4, 0.8);
    MatSDS startPoint(1,2,{1.5,1.5});

    try
    {
        int res = function.solve(startPoint);
        if(res == -1)
        {
            std::cout<<"求解失败"<<std::endl;
        }
        else if(res == -2)
        {
            std::cout<<"Hessian 矩阵非正定, 求解失败"<<std::endl;
        }
        else
        {
            std::cout<<"求解成功! 迭代次数: "<<res<<std::endl;
            std::cout<<"最小值点:"<<res<<std::endl;
            startPoint.print();

            std::cout<<"此时方程的值为:"<<std::endl;
            function.function(startPoint).print();

#ifdef WIN32
        Gui::setFont("c:/windows/fonts/MSYH.TTC",16);
#endif
        std::cout<<"按\"esc\"退出!"<<std::endl;
        Gui::plotLine(u8"阻尼牛顿法迭代X中间值","x",function.getXStep());
        Gui::wait();

        }

    }
    catch(Exception ex)
    {
        std::cout<<ex.what();
    }
}

结果:对于初始点 (1.5,1.5) ,迭代4次即可完成

阻尼牛顿法,4次完成迭代

阻尼牛顿法X中间点可视化

结果:对于初始点 (0,3) ,同样是Hessian矩阵不正定.

阻尼牛顿法求解失败

2. 牛顿Levenberg-Marquardt法

LM(Levenberg-Marquardt)法是处理Hessian矩阵H奇异、不正定等情形的一个最简单有效的方法,求解{d}_k公式变为:

{d}_k=−(H({x}_k)+{\color{red}{v_kI}})^{−1}J({x}_k)

式中:

v_k>0,I为单位阵,如果(H({x}_k)+v_kI)还不正定,可取v_k=2v_k

步骤

step1.给定初始点{x}_0\in R^n,v_k>1,k=0,\rho\in(0,0.5), \tau\in(0,1),以及最小误差\xi;

step2.判断{x}_k是否满足终止条件,是则终止;

step3.求解H_{new}({x}_k)=H({x}_k)+v_k∗I;

step4.判定H_{new}({x}_k)正定性,如果非正定,令H_{new}({x}_k)=H({x}_k)+2∗v_k∗I;

step5.确定f(x){x}_k点的下降方向{d}_k=−H_{new}({x}_k)^{−1}J({x}_k);

step6.计算\alpha _k=\tau^m,m=m+1;

step7.如果f({x}_k+\alpha _k{d}_k)>f({x}_k )+\rho\alpha _kJ({x}_k)^T{d}_k,返回step4,否则继续;

step8. {x}_k+1={x}_k+\alpha _k{d}_k,k=k+1{x}_k+1={x}_k+\alpha _k{d}_k,k=k+1{x}_k+1={x}_k+\alpha _k{d}_k,k=k+1{x}_k+1={x}_k+\alpha _k{d}_k,k=k+1;返回step2.

举例

y = 3x_1^2+3x_2^2-x_1^2+x_2,初始点(0,3),\xi=10^{-3}

#include <Msnhnet/math/MsnhMatrixS.h>
#include <Msnhnet/cv/MsnhCVGui.h>
#include <iostream>

using namespace Msnhnet;

class NewtonLM
{
public:
    NewtonLM(int maxIter, double eps, double vk, double rho, double tau):_maxIter(maxIter),_eps(eps),_vk(vk),_rho(rho),_tau(tau){}


    void setMaxIter(int maxIter)
    {
        _maxIter = maxIter;
    }

    virtual int solve(MatSDS &startPoint) = 0;

    void setEps(double eps)
    {
        _eps = eps;
    }

    void setRho(double rho)
    {
        _rho = rho;
    }

    void setTau(double tau)
    {
        _tau = tau;
    }

    //正定性判定
    bool isPosMat(const MatSDS &H)
    {
         MatSDS eigen = H.eigen()[0];
         for (int i = 0; i < eigen.mWidth; ++i)
         {
            if(eigen[i]<=0)
            {
                return false;
            }
         }

         return true;
    }

    const std::vector<Vec2F32> &getXStep() const
    {
        return _xStep;
    }

protected:
    int _maxIter = 100;
    double _eps = 0.00001;
    double _vk  = 3;
    double _rho = 0.2;
    double _tau = 0.9;
    std::vector<Vec2F32> _xStep;
protected:
    virtual MatSDS calGradient(const MatSDS& point) = 0;
    virtual MatSDS calHessian(const MatSDS& point) = 0;
    virtual MatSDS calDk(const MatSDS& point) = 0;
    virtual MatSDS function(const MatSDS& point) = 0;
};


class NewtonLMProblem1:public NewtonLM
{
public:
    NewtonLMProblem1(int maxIter, double eps, double vk, double rho, double tau):NewtonLM(maxIter, eps, vk,rho,tau){}

    MatSDS calGradient(const MatSDS &point) override
    {
        MatSDS J(1,2);
        double x1 = point(0,0);
        double x2 = point(0,1);

        J(0,0) = 6*x1 - 2*x1*x2;
        J(0,1) = 6*x2 - x1*x1;

        return J;
    }


    MatSDS calHessian(const MatSDS &point) override
    {
        MatSDS H(2,2);
        double x1 = point(0,0);
        double x2 = point(0,1);

        H(0,0) = 6 - 2*x2;
        H(0,1) = -2*x1;
        H(1,0) = -2*x1;
        H(1,1) = 6;

        return H;
    }


    MatSDS calDk(const MatSDS& point) override
    {
        MatSDS J = calGradient(point);
        MatSDS H = calHessian(point);

        MatSDS I = MatSDS::eye(H.mWidth);


        MatSDS Hp  = H + _vk*I;

        if(!isPosMat(Hp))
        {
            H = H + 2*_vk*I;
        }
        else
        {
            H = Hp;
        }

        return -1*H.invert()*J;
    }


    MatSDS function(const MatSDS &point) override
    {
        MatSDS f(1,1);
        double x1 = point(0,0);
        double x2 = point(0,1);

        f(0,0) = 3*x1*x1 + 3*x2*x2 - x1*x1*x2;

        return f;
    }

    int solve(MatSDS &startPoint) override
    {
        MatSDS x = startPoint;
        for (int i = 0; i < _maxIter; ++i)
        {
            _xStep.push_back({(float)x[0],(float)x[1]});
            //这里就不用检查正定了
            MatSDS dk = calDk(x);

            double alpha = 1;

            //Armijo准则
            for (int i = 0; i < 100; ++i)
            {
                MatSDS left  = function(x + alpha*dk);
                MatSDS right = function(x) + this->_rho*alpha*calGradient(x).transpose()*dk;

                if(left(0,0) <= right(0,0))
                {
                    break;
                }

                alpha = alpha * _tau;
            }

            std::cout<<std::left<<"Iter(s): "<<std::setw(4)<<i<<", Loss: "<<std::setw(12)<<dk.L2()<<" Result: "<<function(x)[0]<<std::endl;

            x = x + alpha*dk;

            if(dk.LInf() < _eps)
            {
                startPoint = x;
                return i+1;
            }
        }

        return -1;
    }
};



int main()
{
    NewtonLMProblem1 function(1000, 0.001,3, 0.4, 0.8);
    MatSDS startPoint(1,2,{0,3});

    try
    {
        int res = function.solve(startPoint);
        if(res < 0)
        {
            std::cout<<"求解失败"<<std::endl;
        }
        else
        {
            std::cout<<"求解成功! 迭代次数: "<<res<<std::endl;
            std::cout<<"最小值点:"<<res<<std::endl;
            startPoint.print();

            std::cout<<"此时方程的值为:"<<std::endl;
            function.function(startPoint).print();

#ifdef WIN32
        Gui::setFont("c:/windows/fonts/MSYH.TTC",16);
#endif
        std::cout<<"按\"esc\"退出!"<<std::endl;
        Gui::plotLine(u8"牛顿LM法迭代X中间值","x",function.getXStep());
        Gui::wait();
        }

    }
    catch(Exception ex)
    {
        std::cout<<ex.what();
    }
}

结果: 对于初始点 (0,3) ,迭代8次即可完成,解决了Newton法Hessian矩阵不正定的问题.

牛顿LM法8次迭代求解成功

牛顿LM法X中间点可视化

3.拟牛顿法

牛顿法虽然收敛速度快,但是计算过程中需要计算目标函数的Hassian矩阵,有时候Hassian矩阵不能保持正定从而导致牛顿法失效.从而提出拟牛顿法.

思路:

通过用不含二阶导数的矩阵U代替牛顿法中的H^{−1},然后沿着−UJ的方向做一维搜索.不同的构建U的方法有不同的拟牛顿法.

特点:

1.不用求Hessian矩阵;

2.不用求逆;

拟牛顿条件

令{y}_k=J({x}_k+1)−J({x}_k), {s}_k={x}_{k+1}−{x}_k,有:

{y}_k=H({x}_{k+1}){s}_k\quad or \quad {s}_k=H({x}_{k+1})^{−1}{y}_k

- DFP法 不含二阶导数的矩阵U(这里写成D区分BFGS)代替H^{−1},拟牛顿条件写成:

{s}_k=D_{k+1}{y}_k

叠加方式求D_{k+1},一般取D_0=I:

{d}_k+1={d}_k+\Delta {d}_k,k=0,1,2...

\Delta {d}_k确定(推导过程省略):

\Delta {d}_k=\frac{{s}_k{s}_k^T}{{s}_k^T{y}_k}−\frac{{d}_k{y}_k{y}_k^T{d}_k}{{y}_k^T{d}_k{y}_k}

步骤:

step1.给定初始点{x}_0 \in R^n,k=0,\rho \in(0,0.5), \tau\in(0,1),以及最小误差\xi;

step2.判断{x}_k是否满足终止条件,是则终止;

step3.确定f(x){x}_k点的下降方向{d}_k=−{d}_kJ({x}_k );

step4.计算\alpha_k=\tau^m,m=m+1;

step5.如果f({x}_k +\alpha_k{d}_k)>f({x}_k )+\rho \alpha_kJ({x}_k )^T{d}_k,Armijo准则,返回step4,否则继续;

step6.{s}_k=\alpha_k{d}_k;{x}_k +1={x}_k +{s}_k;

step7.计算{y}_k=J({x}_k +1)−J({x}_k );

step8.计算\Delta {d}_k=\frac{{s}_k{s}_k^T}{{s}_k^T{y}_k}−\frac{{d}_k{y}_k{y}_k^T{d}_k}{{y}_k^T{d}_k{y}_k};

step9. k=k+1;返回step2.

- BFGS法

不含二阶导数的矩阵U(这里写成B区分DFP)代替H,拟牛顿条件写成:

{y}_k=B_{k+1}{s}_k

叠加方式求B_{k+1},一般取B_0=I:

B_{k+1}=B_k+\Delta B_k,k=0,1,2...

\Delta B_k确定(推导过程省略):

\Delta B_k=\frac{{y}_k{y}_k^T}{{y}_k^T{s}_k}−\frac{B_k{s}_k{s}_k^TB_k}{{s}_k^TB{s}_k}

利用Sheman−Morrison公式:

A\in R^n为非奇异方正,u,v\in R^n,若1+v^TA^{−1}u≠0,则有:

(A+uv^T)^{−1}=A^{−1}−\frac{A^{−1}uv^TA^{−1}}{1+v^TA^{−1}u}

得到B_{k+1}^{−1}B_k^{−1}的关系:

B_{k+1}^{−1}=(I−\frac{{s}_k{y}_k^T}{{y}_k^T{s}_k})B_k^{−1}(I−\frac{{y}_k{s}_k^T}{{y}_k^T{s}_k})+\frac{{s}_k{s}_k^T}{{y}_k^T{s}_k}

{d}_k=B_k^{−1}:

D_{k+1}=(I−\frac{{s}_k{y}_k^T}{{y}_k^T{s}_k}){d}_k(\frac{I−{y}_k{s}_k^T}{{y}_k^T{s}_k})+\frac{{s}_k{s}_k^T}{{y}_k^T{s}_k}

步骤:

step1.给定初始点{x}_0\in R^n,k=0,\rho\in (0,0.5), \tau\in (0,1),以及最小误差\xi;

step2.判断{x}_k是否满足终止条件,是则终止;

step3.确定f(x){x}_k点的下降方向{d}_k=−{d}_kJ({x}_k);

step4.计算\alpha_k=\tau^m,m=m+1;

step5.如果f({x}_k+\alpha_k{d}_k)>f({x}_k)+\rho\alpha_kJ({x}_k)^T{d}_k,Armijo准则,返回step4,否则继续;

step6.{s}_k=\alpha_k{d}_k;x_{k+1}={x}_k+{s}_k;

step7.计算{y}_k = J(x_{k+1})−J({x}_k);

step8.计算D_{k+1}=(I−\frac{{s}_k{y}_k^T}{{y}_k^T{s}_k}){d}_k(\frac{I−{y}_k{s}_k^T}{{y}_k^T{s}_k})+\frac{{s}_k{s}_k^T}{{y}_k^T{s}_k}

step9. k=k+1;返回step2.

举例

y = 3x_1^2+3x_2^2-x_1^2+x_2,初始点(4,3),\xi=10^{-3}

#include <Msnhnet/math/MsnhMatrixS.h>
#include <Msnhnet/cv/MsnhCVGui.h>
#include <iostream>

using namespace Msnhnet;

class NewtonLM
{
public:
    NewtonLM(int maxIter, double eps, double vk, double rho, double tau):_maxIter(maxIter),_eps(eps),_vk(vk),_rho(rho),_tau(tau){}


    void setMaxIter(int maxIter)
    {
        _maxIter = maxIter;
    }

    virtual int solve(MatSDS &startPoint) = 0;

    void setEps(double eps)
    {
        _eps = eps;
    }

    void setRho(double rho)
    {
        _rho = rho;
    }

    void setTau(double tau)
    {
        _tau = tau;
    }

    //正定性判定
    bool isPosMat(const MatSDS &H)
    {
         MatSDS eigen = H.eigen()[0];
         for (int i = 0; i < eigen.mWidth; ++i)
         {
            if(eigen[i]<=0)
            {
                return false;
            }
         }

         return true;
    }

    const std::vector<Vec2F32> &getXStep() const
    {
        return _xStep;
    }

protected:
    int _maxIter = 100;
    double _eps = 0.00001;
    double _vk  = 3;
    double _rho = 0.2;
    double _tau = 0.9;
    std::vector<Vec2F32> _xStep;
protected:
    virtual MatSDS calGradient(const MatSDS& point) = 0;
    virtual MatSDS calHessian(const MatSDS& point) = 0;
    virtual MatSDS calDk(const MatSDS& point) = 0;
    virtual MatSDS function(const MatSDS& point) = 0;
};


class NewtonLMProblem1:public NewtonLM
{
public:
    NewtonLMProblem1(int maxIter, double eps, double vk, double rho, double tau):NewtonLM(maxIter, eps, vk,rho,tau){}

    MatSDS calGradient(const MatSDS &point) override
    {
        MatSDS J(1,2);
        double x1 = point(0,0);
        double x2 = point(0,1);

        J(0,0) = 6*x1 - 2*x1*x2;
        J(0,1) = 6*x2 - x1*x1;

        return J;
    }


    MatSDS calHessian(const MatSDS &point) override
    {
        MatSDS H(2,2);
        double x1 = point(0,0);
        double x2 = point(0,1);

        H(0,0) = 6 - 2*x2;
        H(0,1) = -2*x1;
        H(1,0) = -2*x1;
        H(1,1) = 6;

        return H;
    }


    MatSDS calDk(const MatSDS& point) override
    {
        MatSDS J = calGradient(point);
        MatSDS H = calHessian(point);

        MatSDS I = MatSDS::eye(H.mWidth);


        MatSDS Hp  = H + _vk*I;

        if(!isPosMat(Hp))
        {
            H = H + 2*_vk*I;
        }
        else
        {
            H = Hp;
        }

        return -1*H.invert()*J;
    }


    MatSDS function(const MatSDS &point) override
    {
        MatSDS f(1,1);
        double x1 = point(0,0);
        double x2 = point(0,1);

        f(0,0) = 3*x1*x1 + 3*x2*x2 - x1*x1*x2;

        return f;
    }

    int solve(MatSDS &startPoint) override
    {
        MatSDS x = startPoint;
        for (int i = 0; i < _maxIter; ++i)
        {
            _xStep.push_back({(float)x[0],(float)x[1]});
            //这里就不用检查正定了
            MatSDS dk = calDk(x);

            double alpha = 1;

            //Armijo准则
            for (int i = 0; i < 100; ++i)
            {
                MatSDS left  = function(x + alpha*dk);
                MatSDS right = function(x) + this->_rho*alpha*calGradient(x).transpose()*dk;

                if(left(0,0) <= right(0,0))
                {
                    break;
                }

                alpha = alpha * _tau;
            }

            std::cout<<std::left<<"Iter(s): "<<std::setw(4)<<i<<", Loss: "<<std::setw(12)<<dk.L2()<<" Result: "<<function(x)[0]<<std::endl;

            x = x + alpha*dk;

            if(dk.LInf() < _eps)
            {
                startPoint = x;
                return i+1;
            }
        }

        return -1;
    }
};



int main()
{
    NewtonLMProblem1 function(1000, 0.001,3, 0.4, 0.8);
    MatSDS startPoint(1,2,{0,3});

    try
    {
        int res = function.solve(startPoint);
        if(res < 0)
        {
            std::cout<<"求解失败"<<std::endl;
        }
        else
        {
            std::cout<<"求解成功! 迭代次数: "<<res<<std::endl;
            std::cout<<"最小值点:"<<res<<std::endl;
            startPoint.print();

            std::cout<<"此时方程的值为:"<<std::endl;
            function.function(startPoint).print();

#ifdef WIN32
        Gui::setFont("c:/windows/fonts/MSYH.TTC",16);
#endif
        std::cout<<"按\"esc\"退出!"<<std::endl;
        Gui::plotLine(u8"牛顿LM法迭代X中间值","x",function.getXStep());
        Gui::wait();
        }

    }
    catch(Exception ex)
    {
        std::cout<<ex.what();
    }
}

结果:对于初始点 (4,3) ,迭代9次即可完成,此点Newton法,DFP法都无解,BFGS方法有解,一般来说BFGS效果比较好.

拟牛顿法9次完成求解

拟牛顿法X中间值可视化

4. 源码

https://github.com/msnh2012/numerical-optimizaiton(https://github.com/msnh2012/numerical-optimizaiton)

5. 依赖包

https://github.com/msnh2012/Msnhnet(https://github.com/msnh2012/Msnhnet)

6. 参考文献

  1. Numerical Optimization. Jorge Nocedal Stephen J. Wrigh
  2. Methods for non-linear least squares problems. K. Madsen, H.B. Nielsen, O. Tingleff.
  3. Practical Optimization_ Algorithms and Engineering Applications. Andreas Antoniou Wu-Sheng Lu
  4. 最优化理论与算法. 陈宝林
  5. 数值最优化方法. 高立

网盘资料下载:链接:https://pan.baidu.com/s/1hpFwtwbez4mgT3ccJp33kQ 提取码:b6gq

7. 最后

  • 欢迎关注我和BBff及公众号的小伙伴们一块维护的一个深度学习框架Msnhnet: https://github.com/msnh2012/Msnhnet Msnhnet除了是一个深度网络推理库之外,还是一个小型矩阵库,包含了矩阵常规操作,LU分解,Cholesky分解,SVD分解。

欢迎关注GiantPandaCV, 在这里你将看到独家的深度学习分享,坚持原创,每天分享我们学习到的新鲜知识。( • ̀ω•́ )✧

有对文章相关的问题,或者想要加入交流群,欢迎添加BBuf微信:

二维码


本文总阅读量